Random Baselines for Simple Code Problems are
Competitive with Code Evolution

Yonatan Gideoni'™* Yujin Tang® Sebastian Risi’| Yarin Galf
TOATML, University of Oxford ~ $Sakana AI | IT University of Copenhagen

Abstract

Sophisticated LLM-based search pipelines have been proposed for Al for scientific
discovery, but is their complexity necessary? As a case study, we test how well
two kinds of LLM-based random baselines — I[ID random sampling of programs
and a sequential random search — do on nine problems from the AlphaEvolve
paper [Novikov et al., 2025]], compared to both AlphaEvolve and a strong open-
source baseline, ShinkaEvolve. We find that random search works well, with
the sequential baseline matching AlphaEvolve on 4/9 problems and matching or
improving over ShinkaEvolve, using similar resources, on 7/9. This implies that
some improvements may stem not from the LLM-driven program search but from
the manual formulation that makes the problems easily optimizable.

1 Introduction

In AlI for scientific discovery large language models (LLMs) are often used to search over a compli-
cated space for an object with some properties. For example, |[Novikov et al.|[2025]] define various
mathematical bounds using Python programs, so a better bound can be found by searching over
program space. Their pipeline, AlphaEvolve, found new best bounds for a variety of problems by
using an LLM to “evolve” some code, acting as an evolutionary search’s mutation operator.

Many works in Al4Science propose complex pipelines and showcase their resulting scientific dis-
coveries, e.g. |[Lu et al.| [2024]], |Gottweis et al.|[[2025]], Novikov et al.|[2025]], Lange et al.| [2025],
Mitchener et al.|[2025]. Although this shows how discoveries can be found, often the search method’s
efficacy isn’t tested. Moreover, in spite of these problems’ complex formulations, some of them
are functionally simple. Many problems solved by AlphaEvolve have relatively low dimensional
input spaces — consisting of 10° — 10 numbers — with their optimal solutions being straightforward
programs for black-box numerical optimization (see Listing E] This begs the question, how well
would much simpler search methods do?

As a first step towards answering this, we test how well random search (RS) baselines do on nine
problems from the AlphaEvolve paper. As it is unclear how those solutions were found, and given
how many resources, we compare to a similar open-source sample-efficient pipeline, ShinkaEvolve
[Lange et al.,[2025]]. Testing two variants of random search — IID random sampling and sequential
random search — shows that they perform well, matching or exceeding ShinkaEvolve on 4/9 and
7/9 problems respectively. When API budget-matched, IID and sequential RS have a probability
of matching or exceeding code evolution of 44% and 76% respectively. Thus, at least for easily
verifiable problems with short programs as answers, the hard part may be formulating the problems
so they are easily optimizable — which is still done by hand — and not the LLM-driven search itself.

*Work done during an internship at Sakana AI. Email: |yg @robots.ox.ac.uk
2This is seen in AlphaEvolve’s limited shared code and open-source replications like Sharmal [2025], Lange
et al.|[2025].

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Deep Learning for
Code.

mailto:yg@robots.ox.ac.uk

def pack_circles() -> Tuple[np.ndarray, np.ndarray]:

Try to arrange the circles in a grid-like structure
initial_centers = np.array([[0.2, 0.2], [0.8, 0.2], [0.2, 0.8], [0.8, 0.8],

Define bounds for the optimizer
bounds = [(0, 1) for _ in range(52)] + [(0, 0.5) for _ in range(26)]

result = minimize(
calculate_objective,
x0,
method="'SLSQP',
bounds=bounds,
constraints=calculate_constraints(x0),
options={'maxiter': 2000, 'ftol': le-6}
)

return centers, radii

Listing 1: Code snippets from the best circle packing solution found by a random baseline here. The
function is fairly straightforward, using simple black-box numerical optimization.

2 Problems

Novikov et al.| [2025]] demonstrated using LLM-driven code evolution to solve diverse problems,
among them finding mathematical bounds. We focus on these kinds of problems as they are relatively
simple, requiring short single-file programs and quick CPU based evaluation. These problems are
subdivided into those belonging to analysis, combinatorics, or geometry, with us using three, two, and
four problems from each category respectivelyﬂ Brief summaries of the problems and their bounds
are in Table [2]in Appendix [A] with longer explanations in[Novikov et al.| [2025]’s Appendix.

Each problem defines a function that converts a list of numbers (perhaps with some additional
structure) into a bound. For example, one problem is finding the maximum sum of radii of 26 circles
in a unit square. Given a list of numbers representing the radii and center locations, then, assuming
the circle packing is valid, the bound is the sum of numbers representing the radii. This setup is
illustrated in Figure[Ta] Code evolution pipelines find programs that generate these numbers.

3 Random Baselines

We test two simple ways of searching over programs — IID random sampling and sequential random
search. IID RS samples many programs given some prompt defining the problem, evaluates them,
and selects the one with the best bound. Sequential RS initially generates programs like IID RS,
but then in its following generations{ﬂincludes three randomly selected successful programs in its
prompt for the LLM to improve on. “Successful” simply means they returned a valid output, where
the selection is otherwise completely random. This is done several times, each time constituting a
“trial”, after which the best bound is selected among all programs across all generations and trials.
Figure|lb|illustrates both baselines.

In addition to searching over programs, random search can be done over a different space, like the
level of a problem’s input. Searching directly at the input level, where the problem’s parameters are
sampled from some distribution, can work for low dimensional problems but struggles scaling for
cases with even tens of dimensions. This is shown in Appendix [B]over a subset of three problems.

For these LLM-based search methods, should domain knowledge be used? While on the one hand
it could guide the model towards better solutions it can also lead it down suboptimal trajectories.
Moreover, biasing the search confounds how well a method works with how the LLM is guided.
Guidance can be desirable when solving a problem, but not necessarily when benchmarking a
setup. Thus, to purely test the search methods in and of themselves, we opt to give minimal domain

3Combinatorics has only two problems, hence the imbalance.
“In the evolutionary algorithms sense of the word.

f3
o
VAN

.fG - one trial

condition on
compiled

1.2k

rograms
generation 1 p(ovgerall)
Run + eval

fr fs 7o DDﬂ MExX]p =) \\>‘<N
(o)

. [e) _ ﬁ eneration2)/ N
. .,," OO 2 v »// Run + eval ~
)| 8 EEEE 7.??
bound
[] fi et
{ list c;f ;lurx;bers @

best
11D random sampling Sequential random search
(@ (b)

bound
Figure 1: (a) Each problem effectively defines a function that gets as input a list of numbers, possibly
with some extra structure, and outputs a mathematical bound that should be maximized or minimized.
(b) The two baselines, (left) randomly IID sampling a set of programs from an LLM and picking
the best one and (right) generating a set of programs, evaluating them, and generating a new set
conditioned on some of those that successfully ran.

......

bound to
maximise/minimise

knowledge in the model’s prompts, specifying only the problem’s broad structure and some evaluation
functions. An example prompt, for the second autocorrelation inequality, is given in Appendix [D]

This relatively little domain knowledge also facilitates a fair comparison with methods that get more
than just prompts as inputs. ShinkaEvolve and other code evolution systems (e.g. Novikov et al.
[2025]], Sharmal [2025]) iterate over an initial program, starting their search with some guidance. For
example, Novikov et al.|[2025]],[Lange et al.|[2025]], [Sharma) [2025] start their circle packing program
with a function that, given a configuration of circle centers, finds their maximal radii. When asking
Gemini 2.5 Pro to generate ten circle packing solutions with a prompt with minimal biases it never
includes such a function in its output. Thus, we choose to always initialize ShinkaEvolve from a
trivial initial program with essentially no domain knowledge beyond the functions the RS baselines
can access.

Regarding the setup, for the baselines we use Gemini 2.5 Pro, sampling with a temperature of 0.8, a
top-p sampling cutoff of 0.95, a thinking budget of 1024 tokens, and let each program evaluation
run for at most 5 minutes. These settings were not thoroughly ablated and chosen as they seemed
like sensible defaults. During development we observed a general, intuitive trend of more thinking
tokens and a longer execution time giving better results, while making API calls more expensive
and experiments taking longer. Given a prompt describing a problem we ask the LLM to output
entire programs and extract ~~ “python ... 7~ from its completions. 2000 solutions are sampled
for each problem for IID RS and 1200 for sequential RS, using 6 trials with 10 generations and 20
programs per generation. Each baseline requires $25-50 worth of API calls per problem.

To make the comparison fair, we restrict ShinkaEvolve to LLMs from the Gemini family — specifically
2.5 Pro, Flash, and Flash Lite. Hyperparameters are based on their circle packing setup and slightly
tunedE] while also changing the system prompts and initial programs per problem. Each problem is
run until it uses up $20 of API budget, typically yielding 500-800 generationsﬂ For reference, the
circle packing run in|Lange et al. [2025]] costs about $12 and ran for 150 generations.

4 Results

To see which search method works best there are two basic questions that should be answered,
pertaining to a method’s performance and efficiency. First, for a set problem which search method

>Most importantly, if Shinka is given unlimited thinking tokens (as it by default is) then it can be very
expensive to run for many generations and, given a limited budget, isn’t competitive with the RS baselines. Thus,
we limit Shinka as well to 1024 thinking tokens per query.

%In many cases it is unclear whether using a larger budget would lead to significant improvements as after
enough generations ShinkaEvolve seems to plateau.

performs best, given all methods have a reasonable budget?[] Second, given the same budget, what is
the probability one method outperforms another? RS baselines are found to be competitive with code
evolution in both regards.

Table [I| shows how well each method performed across all problems. IID RS matches or exceeds
Shinka on 4/9 problems, while sequential RS matches or exceeds it on 7/9. Interestingly, sequential
RS matches AlphaEvolve on 4/9 problems, despite the latter using an unspecified but potentially
much larger budget.

Problem AE IIDRS Sequential RS ShinkaEvolve
First autocorr. ineq. (@] 1.5053 1.529 1.519 1.522
Second autocorr. ineq. (1) 0.8962 0.8739 0.8795 0.8955
Uncertainty ineq. ¢ 03521 0.3521 0.3521 0.3521
Erd6s’ min. overlap () 0.3809 0.3811 0.3812 0.3809
Sums/differences of sets (1) 1.1584 1.1237 1.1216 1.1095
Max-min dist. ratio) 12.88926 12.88923 12.88923 12.88923
Heilbronn triangles ™ 0.0365 0.0334 0.0365 0.0356
Kissing number in 11D () 593 438 438 402
Circle packing T 2.63586 2.632 2.63598 2.63598
problems > Shinka 7/9 4/9 7/9 -

problems > AE - 2/9 4/9 4/9

Table 1: Results for code evolution and random search baselines. Best results are bolded, second best
are italicized. Arrows denote whether higher or lower is better. # problems > M means the number
of problems for which a method matches or exceeds method M.

To see how well the baselines would perform given the same budget as ShinkaEvolve, we calculate
the probability RS would have matched or outperformed it for each problem, Prg>shinka- This is
done using a bootstrap estimate over a single pre-existing Shinka run and a set of IID RS samples
and sequential RS trials, with details in Appendix “Budget” can refer to various metrics, like the
API budget or number of evaluated programs, with the main bottleneck defining what’s important.
As programs are relatively quick to evaluate, here the API budget is the limiting factor. To see
how methods compare regarding their sample efficiency, a similar comparison that reaches a similar
conclusion is given in Appendix [G]

Figure [2[shows the probability of IID and sequential RS matching or exceeding Shinka, averaged
over all problems. Shinka has a longer warmup phase than the RS baselines due to various reasons,
e.g. sometimes using code diffs instead of generating full files, hence why it is initially much worse
than both baselines. After somewhat plateauing at higher budgets IID RS does moderately well while
sequential RS decently outperforms code evolutionﬁ

There are a few possible reasons why sequential RS outperforms code evolution. Empirically, code
evolution suffers from “code bloat”, where the number of lines in a program gradually increases,
potentially leading to inefficient edits or making the search struggle to go down different paths. This
phenomenon is known in classical genetic programming literature [Langdon and Poli, |1997], but
might be detrimental here.

Note that neither the RS baselines nor ShinkaEvolve were extensively hyperparameter tuned. The
baselines have very few hyperparameters and were tested to be generally operational while ShinkaE-
volve was slightly tweaked relative to some default settings, see Appendix [H] for details. This is

"The reasonable budget constraint is important. Given infinite samples, all methods that give a nonzero
probability to all programs, as LLM sampling based methods do, would eventually reach the same performance
ceiling.

80nly a single Shinka run is used per problem as these experiments are very expensive — running Shinka and
the two RS baselines costs >$50 per problem. The RS baselines are easier to slightly oversample as they come
in smaller discrete chunks than a full Shinka run, being more regular samples for IID RS and more trials for
sequential RS.

°It is important to note that as the probability of matching or exceeding a result is measured running a method
vs itself many times would get a probability of >50%. This is due to ties, e.g. two methods converging to the
same bound or reaching a problem’s performance ceiling.

=
o

=== Seq. RS
IID RS

76%

o
o

o o
IN o

o
N

Average Pgs = shinka aCross problems

o
o

2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
Budget [$]

Figure 2: Average probability of matching or exceeding ShinkaEvolve over the 9 problems for the
different baselines. Numbers on the right are the probabilities at the max budget of $20.

important as for budget limited search methods the hyperparameter tuning can be much more ex-
pensive than the final search, so methods would typically be used out of the box. Moreover, any
hyperparameter tuning should be included as part of the search, as a solution found while tuning is
still valid. However, this is often not discussed and complicates the resulting analysis. In practice,
akin to typical learning setups, some problems should be used for finding hyperparameters (as a
validation set) while others are reserved for benchmarking.

Why did ShinkaEvolve find a subpar circle packing here, while [Lange et al.| [2025] got better results
with a lower budget? This is likely due to Shinka here using both a system prompt and initial program
with less domain knowledge. Domain knowledge is likely beneficial to any method, not just code
evolution — sampling a thousand programs using IID RS with a prompt with more domain knowledge
results in a similarly good packing configuration to that found by [Lange et al.|[2025]], as shown in

Appendix [B]

While sequential RS matches AlphaEvolve on a few problems, it is hard drawing a fair comparison
as AlphaEvolve likely uses more resourceq "|and potentially more domain knowledge. Still, a simple
baseline matching a more complicated system shows that the search is arguably quite simple, at least
for these kinds of problems.

5 Discussion

Here we showed that two kinds of random search baselines, IID random sampling and sequential
random search, are competitive with code evolution. Thus, for simple problems like those studied here,
the main challenge might not be finding sufficiently powerful search methods but rather designing
easily optimizable problem formulations, which is still done by human experts.

A nice example of how formulations are potentially more important than the optimization process is
in Appendix B.4 of Novikov et al.|[2025]. After publishing the paper the AlphaEvolve authors were
told of a better formulation of the uncertainty inequality problem, which had a published lower bound
of 0.3284 instead of the previous one of 0.3523. This allowed them to find a new bound of 0.3216

Novikov et al|[2025]] mention using “thousands of LLM samples” per problem, which could translate to
thousands of generations. For reference, here ShinkaEvolve used <800 per problem.

instead of 0.3521. Although the optimization tightened both bounds, the significant improvements
came from a better formulation.

It would be interesting to test simple search methods on harder tasks, like the matrix multiplication
problem from Novikov et al.| [2025] or the mixture of experts loss optimization in|Lange et al.|[2025]].
While the RS baselines seem competitive with code evolution under some constraints, e.g. with a
given budget or max number of evaluated programs, this may differ for harder problems with different
limiting factors.

More fundamentally, it is worth asking, what do we care about solving? In mathematics improving a
bound is typically interesting only if it yields some deeper insights [Taol 2007]], whereas in machine
learning getting better performance on a problem is practically useful even if it is due to mundane
reasons. This is generally the difference between natural and engineering sciences, so systems for
(natural) scientific discovery should focus on yielding insights more than improving bounds and
performance. Regardless of the science, all good results are either useful or interesting, and in the
best cases both. If what matters for scientific discovery is finding good problem formulations, with
the optimization afterwards being easy, how can we teach a model to better formulate problems?

Given a good scientific problem, it is important to decouple the discovery’s importance from that of
the method that led to it. Often these are conflated, and focusing on each can lead to very different
kinds of research. For example, if one focuses on achieving a specific scientific discovery, then as
much domain knowledge as desired can be used, whereas if one proposes a method then it should
be compared to others given similar resources and knowledge. Long term, developing good search
pipelines requires finding sufficiently difficult problems and comparing them to simpler methods so
the new method’s efficacy is clear. While doing so it is important to not unintentionally leak domain
knowledge into the search through hyperparameter optimizations, which could make the search better
than it would be on a new problem. It will be interesting in the future finding harder sets of problems
and building on insights from simple baselines to develop better search methods.

Acknowledgments and Disclosure of Funding

We would like to thank numerous members of the Sakana Al research team for many fruitful
discussions, and especially for Robert Lange for helping with the ShinkaEvolve baselines. Thanks
also to Edan Toledo and Dulhan Jayalath for nice feedback, and to Noya Gideoni for proofreading
an earlier draft. Yonatan is funded by the Rhodes Trust and the AIMS EPSRC CDT (grant no.
EP/S024050/1).

References

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Fuchang Gao and Lixing Han. Implementing the nelder-mead simplex algorithm with adaptive
parameters. Computational Optimization and Applications, 51(1):259-277, 2012.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist.
arXiv preprint arXiv:2502.18864, 2025.

William B Langdon and Riccardo Poli. Fitness causes bloat. In Soft Computing in Engineering
Design and Manufacturing, pages 13-22. Springer, 1997.

Robert Tjarko Lange, Yuki Imajuku, and Edoardo Cetin. Shinkaevolve: Towards open-ended and
sample-efficient program evolution. arXiv preprint arXiv:2509.19349, 2025.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024.

Ludovico Mitchener, Angela Yiu, Benjamin Chang, Mathieu Bourdenx, Tyler Nadolski, Arvis
Sulovari, Eric C Landsness, Daniel L Barabasi, Siddharth Narayanan, Nicky Evans, et al. Kosmos:
An ai scientist for autonomous discovery. arXiv preprint arXiv:2511.02824, 2025.

Alexander Novikov, Ngan Vi, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
volve: A coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131,
2025.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/codelion/openevolve,

Terence Tao. What is good mathematics? Bulletin of the American Mathematical Society, 44(4):
623-634, 2007.

A AlphaEvolve Problems

Table [2|lists the 9 problems studied, taken from |Novikov et al.|[2025]].

Problem Input size Pre-AE Bound AE Bound AE Appendix
First autocorrelation ~ Unbounded, step function 1.5098 1.5053 B.1
inequality ({) heights
Second Unbounded, step function 0.88922 0.8962 B.2
autocorrelation heights
inequality (1)
Uncertainty 3 coefficients of a Hermite 0.35229 0.35210 B.4
inequality () polynomial
Erd6s’ minimum Unbounded, step function 0.380927 0.380924 B.5
overlap ({) heights
Sums vs. differences Unbounded, set U C Zxg 1.14465 1.1584 B.6
of finite sets (1) fulfilling some properties
Max—min distance 32 coordinates (16x2) 12.890 12.88927 B.8
ratio for 16 2D
points ({)
Heilbronn triangles 22 coordinates (11x2) in a 0.036 0.0365 B.9
n=11,) unit-area triangle
Kissing number in Largest number of 11D sphere 592 593 B.11
11D (1) centers all tangent to a
common sphere
Circle packing (1) 78 — 26 center coordinates 2.634 2.63586 B.12
(26x2) and 26 radii

Table 2: Bounds of AlphaEvolve (AE) problems studied here, divided into analysis (top), combina-
torics (middle), and geometry (bottom). The arrow next to the problem name indicates whether it is
an upper bound, so lower results are tighter and hence better ({), or a lower bound so higher is tighter
and thus better (7). All numbers are from |Novikov et al.|[2025]]. “Pre-AE” are the best bounds from
before Novikov et al.|[[2025]].

B Input Level Random Search

We compare two kinds of input random sampling to LLM based program sampling. The simplest
method is direct random sampling, where the problem parameters are randomly sampled from a
given distribution, e.g. uniformly over [0, 1]. If the function is well behaved then random sampling
with numerical optimization should perform better, where the initial guess is sampled like before
but then optimized using a black-box optimizer, here being Nelder-Mead [Gao and Han, |2012]]. Most
general is LLM-based IID random sampling where an LLM is prompted to generate a program
that produces the optimal parameters.

https://github.com/codelion/openevolve
https://github.com/codelion/openevolve

Direct and numerical optimization based random sampling are run for each problem for 6 hours over
8 CPU cores. This results in a tradeoff between the number of sampled solutions and how well each is
optimized, as the optimization based method samples fewer initial points but spends wall clock time
on optimizing them. For LLM based sampling we generate a thousand programs for each problem.
To see if a better LLM produces better programs this is done twice, once using Gemini 2.0 Flash Lite
and again with Gemini 2.5 Pro. For both numerical optimization and LLM based sampling we limit
each program to run for at most 60 seconds.

For the input level sampling, for Erdés’ minimum overlap and circle packing problems the inputs
are sampled uniformly from [0, 1]. For the uncertainty inequality the three inputs are sampled log-
uniformly from [1072, 10%], [10~*, 10°], [10~°, 10~2], with the rough orders of magnitude chosen
based on the pre-AlphaEvolve optimal solution’s coefficients.

Erd8s’ minimum overlap problem can have any arbitrary step function as its input. For a fair
comparison with the AlphaEvolve solution we use 95 steps for the direct and numerical optimization
baselines while for the LLM based sampler we accept any number but prompt the model to use 95.
This may make the problem either easier or harder, as on the one hand it is less open ended but on the
other it is confined to a smaller search space.

For circle packing naively sampling centers and radii would most of the time yield invalid solutions.
Thus, we use some domain knowledge and formulate the problem as a 52-dimensional optimization
problem, where given the 26 centers the optimal radii are inferred. This can be done by solving a
linear programming problem, which is quick in practice. Details are in Appendix [C| This makes
sampling valid solutions feasible but may give these baselines an advantageE] For LLM based
sampling the model has no access to the linear program.

However, as in this case the circle packing input-level sampling has additional domain knowledge in
the form of the linear program we give the LLMs access to the circle packing initial program helper
function from [Novikov et al., 2025]] as a possible helper. This allows random search to get a better
packing than AlphaEvolve, whereas in Table|l| without this additional knowledge it underperformed.
This is an example of domain knowledge being the difference between getting state of the art and
subpar performance.

As seen in Table 3] direct input sampling underperforms sampling programs for the minimum overlap
and circle packing, whereas for the very low dimensional uncertainty inequality they all perform
similarly.

Direct Numerical LLM
Problem AlphaEvolve Sampling Optimization Flash Lite Pro
Uncertainty inequality ({) 0.35210 0.35216 0.35210 0.35213 0.35210
Erd6s’ minimum overlap ({) 0.38092 0.44855 0.39662 0.38242 0.38233
Circle packing (1) 2.63586 1.78428 2.20161 2.52451 2.63598

Table 3: Best bounds found by AlphaEvolve and random search baselines. On two out of the three
problems random search matched or slightly exceeded AlphaEvolve’s bounds.

C Circle Packing Linear Program

Given n circle centers x;, y; we wish to find their radii 7; such that), r; is maximized while all
the circles are in the unit square and do not overlap. Assuming the circle centers are valid, the
no-overlap constraint for circles ¢, j is d;; < r; + r; where d;; = \/(mi — ;)% + (y; — y;)?. Circle
1’s maximum radius without exiting the square is w; = min(x;, y;, 1 — x;, 1 — y;), yielding the
constraint 7; < u;. This also allows pruning the overlap constraints, as if d;; > u; + u; then the
inequality over the radii is always fulfilled. All together this yields a linear program with O(n?)
constraints in the radii, which can be efficiently solved using a variety of tools.

Tt is worth noting that LLMs can easily reproduce the linear programming formulation when prompted to
do so.

D Second Autocorrelation Inequality Prompt

The compute_lower_bound function is taken from AlphaEvolve’s validation script.
${max_execution_time} is replaced with the time limit per problem, which in practice
was 300 seconds (5 minutes) for the programs in Table[I]and 60 seconds for those in Appendix

You are an expert programmer specialising in numerical optimisation. Implement a
« Python function with the exact signature:

def find_step_heights() -> np.ndarray:

Where the goal is to find step function heights that will maximize the lower bound
on the smallest constant C for which $$ \|f*f\/_2"2 \leq C \/f*£\|_1
\/f*f\/_\infty$$, f being a nonnegative function supported on $[-1/4, 1/41$.
The returned np array should represent the heights of this step function,
yielding a constant $K<C$. We wish to maximize K.

Feetd

You can use this predefined helper function without redefining it:

def compute_lower_bound(step_heights: np.ndarray) -> float:
convolution = np.convolve(step_heights, step_heights)

Calculate the 2-norm squared: ||[f*f||_2"2

num_points = len(convolution)

x_points = np.linspace(-0.5, 0.5, num_points + 2)

x_intervals = np.diff (x_points) # Width of each interval

y_points = np.concatenate(([0], convolution, [0]))

12_norm_squared = 0.0

for i in range(len(convolution) + 1): # Iterate through intervals
yl = y_points[i]
y2 = y_points[i + 1]
h = x_intervals[i]
Integral of (mx + c)”2 = h/3 * (y1°2 + yl*y2 + y2°2) where m = (y2-y1)/h,
— ¢ =yl - m*xl, interval is [x1, x2], yl = mxl+c, y2=mx2+c
interval_12_squared = (h / 3) * (yl ** 2 + yl * y2 + y2 %% 2)
12_norm_squared += interval_l2_squared

Calculate the 1-norm: |[|fxf|]_1
norm_1 = np.sum(np.abs(convolution)) / (len(convolution) + 1)

Calculate the infinity-norm: ||fxf|]|_inf
norm_inf = np.max(np.abs(convolution))
return 12_norm_squared / (norm_1 * norm_inf)

Note that all steps should be non-negative. You can have any number of steps in
— your step function and up to ${max_execution_time} seconds for your solution
— to run. The returned value must be a 1-D NumPy array.

E Bootstrap Estimate

IID Random Sampling. Here the bootstrap estimate amounts to calculating a pass@k. Under a given
budget we find the last generation ShinkaEvolve reached before exceeding it, and as its score take
the best bound found until then. If the budget allows sampling k IID programs then the probability
of sampling one that matches or outperforms Shinka’s score can be approximated by repeatedly
sampling k programs out of the n total generated, here being 2000, and seeing if any match or
exceed Shinka’s score. Here n = 2000 and, if ¢ is the number of programs that match/exceed code
evolution’s score this probability estimate can be analytically calculated as 1 — (u) as per Chen
k

[2021]]. The average IID cost per program is estimated as the average cost over all sampled
programs, so small cost differences between individual generations are ignored.

Sequential Random Search. For the sequential RS bootstrap estimate it is important to consider a
realistic scheme of how a given budget would be exhausted, with different setups potentially yielding
different results. Here it is assumed that a budget is used up, generation by generation, until a trial is
exhausted, after which a new trial is begun. The bootstrap is estimated by picking a random trial,
seeing up until which generation in it can be searched under the given budget, and if the trial is
exhausted then continuing to one of the remaining trials.

Formally, if prs>shinka(B, ") is the probability of matching/exceeding a baseline score s given a
budget B and a set of trials 7', where trial t € T"s budget is b;, then prs>sninka 1S recursively defined
as

1
PRs>Shinka(B, T') = T Z max (1 yax(t)>s> PRS>Shinka(B — bg, T\ {t})) (1)
teT

This assumes that all T’ trials are within the budget, where in practice some might not be while others
are. In these cases the sum is only over the trials within budget. For minimization problems the
max(t) > should be changed to min(t) <

F Figure 2| Per-problem Breakdown

First autocorr. ineq. Second autocorr. ineq. Uncertainty ineq.

1.0
0.8
0.6

0.4

0.2 == |ID RS /

=== Seq. RS

o
o

Erdés' min. overlap Sums/differences of sets Heilbronn triangles

PRs = shinka
o o o =
N [e)} [e¢] o

o
N

o
o
I

Circle packing Kissing number in 11D Max-min dist. ratio

; T

0.6

iy
o

0.4

0.2

0.0 0 5 10 15 20 0 5 10 15 20 O 5 10 15 20

Budget [$]

Figure 3: Per-problem probability of matching/exceeding ShinkaEvolve for the two baselines.

10

G Different Methods’ Sample Efficiency

Figures [] and [5] show respectively the aggregate and per-problem probability of RS match-
ing/exceeding Shinka when the budget is defined not by the API cost but the number of evaluated
programs, effectively comparing different methods’ sample efficiency. ShinkaEvolve evaluates one
program per generation while the RS baselines evaluate one program per sample. Note that for a
set API budget Shinka runs until different numbers of generations, as the average cost per program
differs per problem.

Shinka being a bit cheaper per program, perhaps due to also using some cheaper LLMs, results in the
final probabilities in Figure 4 being lower than those in Figure 2] but only slightly.

1.0
n = Seq. RS
EEJ IID RS
5 0.81
o 73%
2
5 0.6
©
$0.4
2
Q.
(]
g0.2
o
>
<
0.04 20 40 60 80 100

% Shinka Evaluated Programs
Figure 4: For each baseline, the average probability of matching or exceeding ShinkaEvolve across

the 9 problems, as a function of the number of evaluated programs. The x axis is the percent of
evaluated programs out of the maximum in the corresponding ShinkaEvolve run.

H ShinkaEvolve Hyperparameters

ShinkaEvolve uses the same prompts as the IID RS baseline, 5 island subpopulations due to the
slightly larger budget than the default setup, and uses just 2 programs from its archive for inspiration
instead of the default 4 in order to reduce API costs.

11

First autocorr. ineq. Second autocorr. ineq. Uncertainty ineq.

1.0

0.8

0.6

0.4

0.2 == ||D RS
=== Seq. RS

o
=)

Erdés' min. overlap Sums/differences of sets Heilbronn triangles

s

Circle packing Kissing number in 11D Max-min dist. ratio

=
=}

o
0

PRs = shinka
o o
~ o

o
N

o
=)

Iy
o

0.8
0.6

0.4

N

0.0 0 200 400 600 800 O 200 400 600 800 O 200 400 600 800
Evaluated Programs

Figure 5: For each baseline, the per-problem probability of matching or exceeding ShinkaEvolve
across the 9 problems, as a function of the number of evaluated programs.

12

	Introduction
	Problems
	Random Baselines
	Results
	Discussion
	AlphaEvolve Problems
	Input Level Random Search
	Circle Packing Linear Program
	Second Autocorrelation Inequality Prompt
	Bootstrap Estimate
	Figure 2 Per-problem Breakdown
	Different Methods' Sample Efficiency
	ShinkaEvolve Hyperparameters

